Bilevel Polynomial Programs and Semidefinite Relaxation Methods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergent Semidefinite Programming Relaxations for Global Bilevel Polynomial Optimization Problems

In this paper, we consider a bilevel polynomial optimization problem where the objective and the constraint functions of both the upper and the lower level problems are polynomials. We present methods for finding its global minimizers and global minimum using a sequence of semidefinite programming (SDP) relaxations and provide convergence results for the methods. Our scheme for problems with a ...

متن کامل

Semidefinite relaxation for dominating set

‎It is a well-known fact that finding a minimum dominating set and consequently the domination number of a general graph is an NP-complete problem‎. ‎In this paper‎, ‎we first model it as a nonlinear binary optimization problem and then extract two closely related semidefinite relaxations‎. ‎For each of these relaxations‎, ‎different rounding algorithm is exp...

متن کامل

SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems

SparesPOP is a MATLAB implementation of a sparse semidefinite programming (SDP) relaxation method proposed for polynomial optimization problems (POPs) in the recent paper by Waki et al. The sparse SDP relaxation is based on “a hierarchy of LMI relaxations of increasing dimensions” by Lasserre, and exploits a sparsity structure of polynomials in POPs. The efficiency of SparsePOP to compute bound...

متن کامل

Successive Linearization Methods for Nonlinear Semidefinite Programs

We present a successive linearization method with a trust region-type globalization for the solution of nonlinear semidefinite programs. At each iteration, the method solves a quadratic semidefinite program, which can be converted to a linear semidefinite program with a second order cone constraint. A subproblem of this kind can be solved quite efficiently by using some recent software for semi...

متن کامل

Optimizing a polyhedral-semidefinite relaxation of completely positive programs

It has recently been shown (Burer, Math Program 120:479–495, 2009) that a large class of NP-hard nonconvex quadratic programs (NQPs) can be modeled as so-called completely positive programs, i.e., the minimization of a linear function over the convex cone of completely positive matrices subject to linear constraints. Such convex programs are NP-hard in general. A basic tractable relaxation is g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2017

ISSN: 1052-6234,1095-7189

DOI: 10.1137/15m1052172